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Abstract 

 
This paper presents a method for calculating a priori uncertainty intervals for plutonium 
interpretations by fission track analysis (FTA) of human urine samples.  The derivations of the 
method are adaptable to estimating uncertainty intervals of analysis of single samples, based on 
calibration data obtained from multiple samples spiked over a range of concentration. The data 
used in last year’s BAER conference talk on the population excretion of plutonium had 
approximately normally-distributed errors in tracks observed at given spike levels, with almost 
constant variance in tracks vs. plutonium spike level.  This allowed fitting of the pre-September 
1998 calibration line by a simple linear regression. Methods are presented here for estimating a 
priori uncertainty intervals about interpretations using post-September 1998 data, which had 
non-normal error distributions and variance increasing with spike level.  
 

INTRODUCTION 
 
At last year’s meeting, a mathematical characterization of the reported distribution of plutonium 
in one-day urine samples from a population exposed to plutonium only from global fallout was 
reported (Brodsky 2000). The use of the lognormal fit to the upper part of the cumulative 
distribution of this data has been used as one source for obtaining an estimate of the population 
dose from plutonium in fallout (Barss et al. 2001).  When that FTA data were obtained (pre-
September 1998), the calibration data showed approximately normal distributions of error and 
constant variance versus plutonium spike level (Schaeffer et al. 1999).  After September 1998, 
the precision of the FTA analysis deteriorated significantly (due to laboratory changes beyond 
the chemist’s control), and the error distribution was no longer normal, nor was the variance 
constant with plutonium level.  Thus, a simple linear regression (least sum-of-squared 
deviations) fit would not be a “best fit” characterization of the calibration data, in the sense that a 
goodness-of-fit test would not yield a minimum reduced chi-square statistic.  Klemm et al. 
(2001) have described the derivation of a best fit calibration line to the post-September 1998 
data, based on the finding that the ratios of observed tracks divided by tracks expected from the 
best fit line were lognormally distributed.  
 
This present paper derives uncertainty distributions of interpretation at each level of plutonium in 
urine, using sample calibration data with non-normal error distributions as fitted by Klemm et al. 
(2001). The uncertainty intervals are compared with analogous “discrimination intervals” 
derived in Mood (1950, pp.299-301) under the assumption of normally-distributed  errors.  
 

METHODS AND RESULTS 
 
Most of the defined symbols and equations used in derivations and calculations in this paper 



were prepared using MATHCAD.  (MATHCAD is a trademark of MathSoft, Inc.)  This format 
has the advantages of reducing the complexity and length of the presentation, and providing the 
mathematical algorithms in an exact form that can be easily read and adapted by others.  For 
simplicity, the parameter definitions and formulations for the lognormal distributions used in this 
paper are obtained from Aitchison and Brown (1963), Gilbert (1987), or Brodsky (1982).   
Caution is necessary in reading symbols: 1) The symbol sg is used for the sample “standard 
geometric deviation” (called “geometric standard deviation” in Boecker et al. (1991)) – this is 
the ratio of the 84.13 percentile to the 50 percentile, the ratio of the 50 percentile to the 15.87 
percentile, or the average of both; 2) The symbol σg is not in this paper the underlying “true” 
population value of the sample estimator sg ; it is defined as the sample estimate of the standard 
deviation in the logarithmic-transformed x value; i.e., the relationship is σg = ln sg. This avoids 
excessive use of the “hat” symbol to designate sample estimators.  
 
Figure 1 shows a sample of pre-September 1998 FTA calibration data that was used by Brodsky 
et al. (1999, 2000a, 2000b) in mathematically characterizing a control population urinary 
excretion distribution, and Barss et al. (2001) for obtaining, together with autopsy data, estimates 
of the U. S. population internal dose from fallout plutonium. Recognizing the unfortunate 
changes that had occurred in laboratory conditions, which must be extremely stringent and 
quality-controlled for best FTA results (Boecker et al. 1991), the post-September data were 
plotted separately as in Figure 2.  Figure 1 shows an approximately constant variance with 
plutonium level (homoscedasticity), a small enough variability so that normal error distribution 
assumptions are reasonable, and an intercept at the Y axis close to the true mean value of the 
simulated urine blank distribution. However, in Figure 2, homoscedasticity is lost, and the 
intercept with the blank data included still does not agree with the mean blank value.  Thus, it 
seemed that something different must have occurred in the chemistry and/or irradiation 
procedures for the blanks as compared with the chemical and/or isotopic matrix of the spiked 
solutions, so only the spiked data are used for the regression and error analysis here.  Thus, 
neither a simple nor a weighted regression, under the usual textbook (Chapman 2000; Miller and 
Miller 1993; Brodsky 1982) assumptions of normally-distributed errors are applicable.  
 
Figure 3 shows the cumulative plot of y/Y that provided the best model of the error distribution; 
it is plotted on a probability vs. a natural log scale, by MINITAB algorithms.  This indicates that 
y/Y is lognormally distributed, and thus ln (y/Y) = ln y – ln Y is normally distributed. This was 
checked by a plot of the deviations in logarithms.  Exhibit 1 presents the solution of the 
equations obtained from the partial differentiations, with respect to slope and intercept, 
respectively, of a chi-square statistic made up of a sum of squared deviations (ln y – ln Y) 
divided by respective variances in these log deviations.  The lower part of this exhibit shows that 
the same values, slope a = 0.679 and intercept b = 24.094, were obtained by the MINIMIZE 
algorithm (Klemm et al. 2001).  Figure 4 compares the calibration lines obtained by simple 
regression and this logarithmic y/Y regression.  Since interpretations of single samples would be 
made from the inverse relation, x = y/a – b/a,  the uncertainty distribution of interpretations must 
be obtained by an algorithm for the probability density of x at any activity level. 
 
Distribution functions are derived here for the case of a random determination of tracks in a 
human urine sample, paired with the subtraction of a randomly varying blank. (Previously, the 
characterization of the distribution of plutonium in control population urines showed similar 
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numerical probabilities for paired- and constant-blank cases (Brodsky et al. 1999; Brodsky 
2000a, 2000b).)  For illustrating the approach,  the slope, a, is assumed constant over the period 
of interpretations. As shown in the second line of definitions at the top of Exhibit 2, the standard 
deviation in logarithms (and the standard geometric deviation) for the blanks was assumed to be 
the same as found for the spike error distribution of Figure 3. The mathematical forms of the 
probability densities for the two terms in x = y/a – b/a, q(w) where w = y/a, and p(u) where u = 
b/a, are presented below the definitions at the top of Exhibit 2, respectively.  The form of q(w) 
was obtained by transforming the lognormal distribution of y/Y, modeled using parameters 
obtained from plots such as in Figure 3, the form of the lognormal density function, and Theorem 
2.1, pages 10-11 in Aitchison and Brown (1963).  The form for the cumulative distribution F as 
evaluated for discrete values of activity is shown on the right side of Exhibit 2.  Exhibit 3 shows 
F defined as G(z) to obtain a continuous function, the forms of which are illustrated below the 
function.  (Special algorithms for z ≤ 0 are not shown.)  Exhibit 4 shows an algorithm for finding 
the upper and  lower bounds of the 90% interpretation range for a single human urine sample, as 
evaluated at the 200 aCi actual level.  Figure 5 shows the uncertainty distributions of 
interpretations for 50, 100, 200, and 300 aCi.  Exhibit 5 shows an algorithm for solving the three 
non-linear equations in Mood (1950), for obtaining the lower bound of the 90% “discrimination” 
interval at the 200 aCi level if the data had been assumed normally distributed. 

 
CONCLUSIONS 

 
1. Error distributions should be examined under the stable analytical conditions to be used for a 

set of samples before the method of fitting a calibration curve is selected. 
2. For the data set used for illustration here, a simple regression calibration line would give 

interpretations about 20% to 10% too low over the range 100 to 300 aCi, compared to those 
obtained by the log y/Y error regression (see Figure 4). 

3. The 90% uncertainty range using the log y/Y regression at 200 aCi is (47.1, 549), compared 
to the Mood (1950) discrimination range of (-53, 461) if normally-distributed errors had been 
assumed here. 
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